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1. Introduction

The slow roll paradigm of inflation [1] requires the scalar potential to be flat to such an

extent, that the Hubble expansion causes an overdamping of the evolution of the inflaton

field. This has the consequence, that the kinetic energy of the inflaton is negligible, and the

equation of state of the dominant component of the Universe is approximately the same

as for vacuum energy. When realizing slow roll inflation within single field models, one

encounters the problem of reconciling the flatness of the potential, its comparably large

magnitude and the wish to keep the vacuum expectation value (VEV) of the inflaton below

the Planck scale.

A possibility to address this problem is the hybrid inflation [2] mechanism, where

the slowly rolling inflaton triggers a waterfall field to rapidly roll down the potential and

to terminate inflation at some critical point. The direction along which the potential in-

creases towards large values driving inflation and the direction of the slow-roll are therefore

separated.

When comparing different models of hybrid inflation at the same scale, that is with

the same value of the potential, it is clear that in a model which has a flatter direction

for the inflaton, a certain comoving scale leaves the horizon when the inflaton is closer to

the critical point than in a model with a steeper direction. Imagining the limiting case

of a completely flat direction, the classical field dynamics suggest that inflation may last

infinitely long with the inflaton being arbitrarily close to the critical point. However, within

quantum theory, metastable configurations eventually always decay to the one of lowest

energy. We therefore expect that in hybrid inflation, a field configuration along the flat

direction may tunnel to form a bubble containing a field configuration in which inflation
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ends and the scalar fields rapidly assume the true vacuum state. It is the purpose of this

study, to estimate this decay rate, compare it to the classical field evolution and to specify

for which model parameters tunneling is a non-negligible effect.

2. Tunneling during inflation

2.1 Tunneling without barriers

The semiclassical theory of tunneling for scalar field theory is developed by Coleman and

Callan in [3, 4]. We consider the Lagrangian

L =
1

2
(∂µϕ)(∂µϕ) − V (ϕ) , (2.1)

where the field ϕ is initially located everywhere in space at the point ϕ+, which corre-

sponds to a false vacuum or a classically metastable configuration, and where we normalize

V (ϕ+) = 0. In order to calculate the decay rate, one proceeds by solving the classical

Euclidean equation of motion

∂2ϕ

∂%2
+

3

%

∂ϕ

∂%
= V ′(ϕ) , (2.2)

where the prime denotes a derivative with respect to ϕ. We assume that the solution takes a

spherical symmetric form in Euclidean space and write % = |x|. In order to understand the

properties of the solutions to this equation, it is most useful to recall that it corresponds to

the equation of motion for a one-dimensional particle moving in the potential V (φ) turned

upside down and with a friction term (3/%)(∂ϕ/∂%), which implies infinite damping at

% = 0 and vanishing damping when % → ∞.

The instanton solution, which obeys the boundary condition ϕ(∞) = ϕ+ is called the

bounce, and we denote it by ϕ(%). It uniquely determines a release point ϕr, at which

V (ϕr) < V (ϕ+) and which satisfies ∂ϕ/∂% = 0 at ϕ = ϕr and % = 0. Physically, ϕr is the

initial value of the scalar field inside a nucleating bubble, from which it starts to evolve

classically.

Having found the bounce solution, we can compute its Euclidean action

SE = 2π2

∞
∫

0

%3d%

[

1

2

(

∂ϕ

∂%

)2

+ V (ϕ)

]

, (2.3)

which is used to obtain the tunneling rate Γ per volume V as

Γ

V =
S2

E

4π2

(

det′
[

−∂2 + V ′′(ϕ)
]

det [−∂2 + V ′′(ϕ+)]

)−1/2

e−SE , (2.4)

where the prime at the determinant indicates the omission of the zero eigenvalues. The

evaluation of the determinants is a quite costly task, and we follow the common prac-

tice [5 – 7] to estimate their values from the parameters of the particular theory under

consideration. Indeed, the results we present justify this procedure a posteriori.
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We intend to apply this theory of tunneling to hybrid inflation, which is implemented

by the generic potential [2]

V (σ, φ) = V0(σ, φ) + VL(σ) =
λ

4
φ4 − m2

2
φ2 +

m4

4λ
+

1

2
g2φ2σ2 + VL(σ) . (2.5)

This potential is almost flat with respect to the inflaton σ along the direction where φ = 0.

The flat direction is lifted by the contribution VL(σ), where we normalize VL(0) = 0, which

causes σ to classically roll down the potential from larger to smaller values. Inflation ends

shortly after σ reaches the critical value

σc =
m

g
. (2.6)

At this point, the mass square for the field φ changes its sign from positive to negative and

the inflationary valley turns into a ridge. The field φ then quickly evolves away from zero

and the fields eventually assume the values

σ0 = 0 , φ0 =
m√
λ

, (2.7)

where V (σ0, φ0) = 0 and inflation is terminated. Due to the transition from valley to ridge,

from which the fields fall, this is called the waterfall mechanism, and we denote the area

where σ < σc as the waterfall region.

Returning to the question of tunneling, we note that the hybrid potential (2.5) does

not have any local minima but the global one (2.7). Therefore, there are no false vacuum

configurations possible, and it may appear that the theory of tunneling and bubble nucle-

ation does not play any role for hybrid scenarios. However, as already mentioned in the

introduction, we can imagine the case VL(σ) = 0 and wonder whether a configuration with

σ > σc is stable.

Quite similar situations are discussed by Weinberg and Lee [5], and they point out

that a bounce solution can exist in some cases without a potential barrier between the

initial point and the global minimum of the potential.1 The necessary condition for the

existence of a bounce is not the presence of a potential barrier, but of an energy barrier,

constituted by the potential and a contribution from the gradient terms of the bubble wall.

Therefore, a false vacuum is not required to exist for tunneling to be a relevant process. A

very instructive example is given by the potential

V (φ) =

{

0, φ < 0

−kφ φ ≥ 0
. (2.8)

Classically, if the field is positioned on the plateau at the position φ = −∆φ, the system

would be stable, while quantum-mechanically, it turns out to be unstable due to tunneling.

The existence of a corresponding bounce solution can be understood from the Euclidean

equation of motion (2.2). If the field is released at rest when % = 0 and φ = φr > 0, it

1Linde has given an earlier example of upside-down φ4-theory, where tunneling can occur [6]. See also [7]

for a more recent related discussion.
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will accelerate in the upside-down potential until φ = 0 and then asymptotically come to

rest again at φ = −∆φ due to the damping term. This bounce solution therefore describes

tunneling from the metastable position φ = −∆φ on the plateau to nucleate a bubble with

the vacuum expectation value φ = φr inside. The rate for this to happen is calculated to

be [5]
Γ

V = C
4

9
π2∆φ4 exp

(

−32π2

3

∆φ3

k

)

, (2.9)

where C is a constant of order one, which can in principle be determined by evaluating the

determinants in eq. (2.4). This result is apparently already very useful in order to estimate

whether for a given inflationary model, it is in order to worry about tunneling. If the cube

of the distance from the region where inflation takes place to some other point of lower

potential is of the same order or smaller than the derivative of the potential at that point,

the bounce action can be of order one and tunneling sizeable. Similar to this example, for

the hybrid potential V0, eq. (2.5), bounce solutions exist that start in the waterfall region

and come at rest on the flat direction where φ = 0 and σ > σc.

One may argue that the potential during inflation is not exactly flat and that therefore

the formula (2.9) for the tunneling rate does not apply. We follow however the argument

of Weinberg and Lee, that taking the motion of the inflaton field or the lifting of the flat

direction into account will only reduce the action of the tunneling process. For calculating

the bubble nucleation rate in the hybrid model, we therefore determine the bounce solution

for the potential V0 and neglect the effect of VL. This way, we obtain a lower bound for

the tunneling probability, which still allows to derive constraints on the parameter space

for hybrid inflation.

Tunneling in inflation inflation models with two evolving scalar fields is also discussed in

refs. [8, 9]. The situations considered there are however quite different from the present one,

since they correspond to classically stable false vacuum configurations, and the scalar field

dynamics provides a trigger mechanism which allows for a graceful exit through tunneling

or an intermediate tunneling transition during inflation. In contrast, we determine in our

study the parameter space of hybrid inflation where tunneling spoils the graceful exit.

2.2 Numerical results

We now determine the bounce action for the hybrid potential (2.5) as a function of the

distance of the inflaton from the critical point,

∆σ = σ − σc . (2.10)

While it is not possible to find analytic bounce solutions, one can reduce the problem

considerably by making use of the scaling properties of the potential. Inspecting the

Euclidean equations of motion (2.2) for the hybrid case,

∂2σ

∂%2
+

3

%

∂σ

∂%
= g2φ2σ ,

∂2φ

∂%2
+

3

%

∂φ

∂%
= −m2φ + g2σ2φ + 4λφ3 , (2.11)
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we see that they are left invariant under the following rescaling:

λ → λκ, ρ → ρκ−1/2, m → mκ1/2, g → gκ1/2 . (2.12)

The bounce action (2.3) then transforms as

SE(λ,m, g,∆σ/σc) = λ−1SE(1,m/
√

λ, g/
√

λ,∆σ/σc) . (2.13)

Another rescaling leaving the equations of motion (2.11) invariant is

m → κm, σ → κσ, φ → κφ, ρ → κ−1ρ . (2.14)

This reveals that SE(λ,m, g,∆σ/σc) does not depend on m,

SE(λ,m, g,∆σ/σc) = λ−1SE(1,m0, g/
√

λ,∆σ/σc) =: λ−1χ(g/
√

λ,∆σ/σc) , (2.15)

where m0 is arbitrary.

We now determine the function χ numerically. In general, finding bounce solutions

can be very complicated for multi-dimensional problems, or at least time consuming. Two

algorithms, that can be applied to a wide range of problems, have been presented, e.g.

in refs. [10, 11]. These algorithms are not immediately applicable to our problem, since

they have been designed for the case of tunneling with potential barriers. Fortunately, for

two-dimensional problems, one can resort to scan procedures, which we apply here. First,

we fix the starting point of the configuration (σ0, φ0) and solve the equations of motion

by integration. For late times, the solution can behave in two qualitatively different ways.

The first possibility is that σ always stays smaller than σc, and φ oscillates around zero.

In this case σ0 was chosen too small. In the second case, σ is finally larger than σc and

the upside-down potential is hence unstable in the φ-direction. Depending on the initial

point, the configuration then behaves usually as φ → ±∞, when ρ → ∞. These two cases

correspond to the ’over-/undershooting’ of the one-dimensional problem. Keeping φ0 fixed,

while varying σ0 using the ’over-/undershooting’ method, leads thus to a bounce solution.

In figure 1, we plot the function χ(g/
√

λ,∆σ/σc), obtained by the above procedure,

for different values of g/
√

λ. The results show for small ∆σ ¿ mg/λ a scaling according

to g−2∆σ, which we explain below. The numerical coefficient turns out to be

SE ≈ 158 × ∆σ

σc

1

g2
. (2.16)

To ensure this scaling behaviour even for very small values for the coupling constants,

we will give an analytical upper bound for the Euclidean action in the following. With above

insights, we can proceed with further simplifications of the problem. Sizeable tunneling

may only occur when the inflaton σ is close to its critical value, cf. figure 1. Therefore, we

assume

∆σ ¿ σc. (2.17)

In order to obtain a lower bound on the tunneling rate, we impose the instanton to follow a

straight trajectory in (σ, φ) space. The exact solution along a curved trajectory has a lower

– 5 –



J
H
E
P
0
1
(
2
0
0
7
)
0
3
3

0 0.1 0.2 0.3 0.4 0.5
DΣ
������������
Σc

100

200

300

400

Χ

0 0.1 0.2 0.3 0.4 0.5

100

200

300

400

Figure 1: The two-dimensional numerical result for the function χ(g/
√

λ, ∆σ/σc) for the values

g/
√

λ =
√

2 (dashed), g/
√

λ = 1 (dot-dashed) and g/
√

λ = 1/
√

2 (dotted).

Euclidean action and therefore corresponds to a larger tunneling rate. The trajectory is

parameterized by

φ = aw ,

σ = ∆σ +
m

g
−

√

1 − a2w , (2.18)

where a ∈ [0; 1] is a free parameter that will be determined by minimizing the action.

Along this trajectory, the potential (2.5) close to the critical point takes the form

V =
1

4

m4

λ
− a2

√

1 − a2gmw3 + a2gm∆σw2 + O
(

w2∆σ2, w4
)

. (2.19)

We now determine the value of the parameter a, for which the Euclidean bounce action is

minimal. For that purpose, we consider the potential

V = −αw3 + βw2 . (2.20)

By rescaling arguments, one obtains that the corresponding action has to scale as

SE ∼ β

α2
∼ ∆σ

m g
× 1

a2(1 − a2)
(2.21)

and is minimized for a = 1/
√

2. This explains the scaling behaviour for small ∆σ observed

in (2.16). The comparison with eq. (2.15) yields for the linearized case

SE ∼ ∆σ

σc

1

g2
, (2.22)

χ(g/
√

λ,∆σ/σc) ∼
(

g√
λ

)−2

× ∆σ

σc
. (2.23)
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For the choice a = 1/
√

2, neglecting the w4 terms in the approximated linearized poten-

tial (2.19) is justified when

w ¿
√

32σc
g2

λ
, (2.24)

and the w2∆σ2 terms are subdominant if

∆σ ¿ 2σc . (2.25)

Numerically, we find for the constant of proportionality

SE = 182 × ∆σ

σc

1

g2
, (2.26)

where the larger factor of proportionality when compared with (2.16) is due to the fact

that we are restricted to the linear path and therefore miss the minimum of the Euclidean

action in the two-dimensional field space. We also note that the point wr, from which the

field w in the bounce solution is released, scales according to

wr = 8.2 × ∆σ

σc

m

g
= 8.2 × ∆σ . (2.27)

Notice that a small Euclidean action, SE ¿ 1, automatically ensures the requirements in

eqs. (2.24) and (2.25) and hence the validity of the approximation in eq. (2.19), if g, λ < 1.

Finally, when assuming m to be of order of the Grand Unified Scale 1016 GeV or less,

all scales in the problem are larger than the Hubble rate2

H =

√

8πV

3m2
Pl

, (2.28)

where mPl = 1.22 × 1019 GeV denotes the Planck mass, such that gravitational effects can

be neglected [12].

3. Bounds on specific models

We estimate the relevant values for ∆σ using the standard slow-roll dynamics of the in-

flaton. When the expectation value of the inflaton, at a certain instant during inflation,

takes the value σ = σe, the number of e-foldings Ne that will elapse until inflation ends is

calculated as

Ne =

σc
∫

σe

H dt =
8π

m2
Pl

V

σe
∫

σc

dσ

∂V/∂σ
, (3.1)

where we have used the slow-roll approximation 3H∂σ/∂t = −∂V/∂σ. One important ob-

servational constraint is the amplitude
√

PR of the power spectrum of scalar perturbations

for the scale k, that exits the horizon when σ = σe,

√

PR =

√

π

6

16

m3
Pl

V 3/2

∂V/∂σ

∣

∣

∣

∣

∣

σ=σe

. (3.2)

2The displacement ∆σ exceeds the Hubble rate as a consequence of imposing the small observed

value (3.3) on the the amplitude of the scalar perturbations (3.2).
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Here, we impose the normalization [13]

√

PR = 4.5 × 10−5 (3.3)

at k = 0.05Mpc−1. This scale exits the horizon at

Ne = 50 +
1

3
log10

TR

109 GeV
+

2

3
log10

V 1/4

1015 GeV
. (3.4)

Since k = 0.05Mpc−1 corresponds to multipole moments around ` = 700, the largest

angular observable scales have exited the horizon about six to seven e-folds earlier.

A very conservative estimate for ∆σ and therefore the tunneling rate is therefore

obtained by setting Ne = 60 and

∆σ = σe − σc . (3.5)

We use this value to compute the Euclidean action (2.26) and to estimate the tunneling

rate (2.4). The latter is to be compared with the expansion rate during inflation H, e.g.

the number of non-inflationary bubbles nucleated per expansion time in one horizon is

given by Γ/(VH4) and should be much less than one. An interesting, but difficult question

would be to quantify how much less. Due to the exponentially strong dependence of the

tunneling rate on the model parameters, we omit a discussion of this question by the same

token on which we do not evaluate the determinants in eq. (2.4).

We furthermore remark that it appears very likely that for viable inflationary models,

one has to impose that tunneling also does not occur at much lower values of Ne than 60.

The nucleation of non-inflationary bubbles would lead to very large density perturbations

on small scales, which induce the production of primordial black holes [14], which is strongly

constrained observationally [15]. We do not discuss this possibility here any further and

just explore the conservative bound.

3.1 Blue model – quadratically lifted flat direction

In the seminal work [2], hybrid inflation is implemented by a quadratically lifted flat di-

rection, through the effective potential

VL(σ) =
1

2
m2

σσ2 . (3.6)

Due to the positive curvature of the potential along the flat direction, the scalar pertur-

bations are predicted to be blue tilted, which is characterized by a scalar spectral index

ns > 1. Using (3.1) and the basic potential (2.5), we can solve for

σe =
m

g
exp

{

λ

2π

m2
Plm

2
σ

m4
Ne

}

, (3.7)

while the amplitude of the power spectrum (3.2) is given by

√

PR =

√

2

3
π

gm5

λ3/2m3
Plm

2
σ

. (3.8)
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The latter two equations can be solved for mσ and σe by assuming that the exponent

in (3.7) is small, approximating σe ≈ σc, and justifying this a posteriori. We find

m2
σ =

g

λ3/2

√

2π

3PR

m5

m3
Pl

, (3.9)

and

σe =
m

g
exp

{

g√
6πλPR

m

mPl

Ne

}

, (3.10)

such that

∆σ ≈ 1√
6πλPR

m2

mPl

Ne (3.11)

Inserting these into (2.26) and using (3.3) yields

SE =
42

g
√

λPR

m

mPl

Ne =
9.3 × 105

g
√

λ

m

mPl

Ne . (3.12)

We now discuss the self-consistency of the above results. For the approximation of the

potential V by expression (2.19) to be valid for the bounce solution, we have to fulfill the

relation (2.24) with w = wr. Using (2.27) and (3.11) with Ne = 60, we find the bound

m ¿ 2.2 × 10−6 g√
λ

mPl . (3.13)

This condition also ensures the validity of the assumption ∆σ ¿ σc, in particular that the

exponent in (3.10) is much smaller than one.

In order to summarize these results, we present figure 2. A reasonable estimate of the

tunneling rate is given by
Γ

V =
S2

E

4π2
g4m4e−SE , (3.14)

since gm is the smallest dimensionful scale occurring in the approximate potential (2.19).

We compare the decay rate with the Hubble rate (2.28), since (Γ/V)/H4 is the number of

bubbles nucleating in one Hubble time within a Hubble volume. Note that for the range of

m for the individual graphs of Γ/V in figure 2, the consistency condition (3.13) is met. The

wide range of orders of magnitude covered relativizes the importance of the prefactor of

the exponential in the expression for Γ/V, in particular the determinants in eq. (2.4). Also

the precise bound on the tunneling rate loses importance due to its strong dependence

on m after it has reached is maximum. As a conservative requirement, we may impose

(Γ/V) < H4. A bound which is stronger by a few orders of magnitude might be in order

to accord with observation, but has no significant impact on the tunneling bound on m.

An important implication to be read off from figure 2 is that for the TeV-scale as a

special scale of interest, g has to be smaller than at most 10−11 in order to avoid a fast end

of inflation through tunneling, provided λ is of order one. Besides by suppressing g, we see

from eq. (3.12), that also small values of λ serve to suppress the tunneling rate. Choosing

this option however leads to expectation values for φ after inflation and σ during inflation,

which are much larger than m. If one considers m as a cutoff scale or to be closely related

to a cutoff scale of an effective theory, this is undesirable.

– 9 –



J
H
E
P
0
1
(
2
0
0
7
)
0
3
3

0 2 4 6 8 10 12 14

log10

m
�����������������
GeV

-60

-40

-20

0

20

40

log10

R
��������������������
GeV4

0 2 4 6 8 10 12 14

-60

-40

-20

0

20

40

Figure 2: Hubble expansion vs. tunneling decay in the blue model. The plot shows log
10

R for

R = H4 (solid) and R = Γ/V for g = 0.5 (dashed), g = 5 × 10−6 (dot-dashed) and g = 5 × 10−12

(dotted). We have chosen λ = 0.5.

As a curiosity, we note that we rule out a particular choice of parameters used as an

example in the original work on hybrid inflation [2], m = 1.3 × 1011 GeV, g2 = λ = 0.1.

In this case, Γ/V = 1.3 × 1033 GeV4, whereas H4 = 1.7 × 1014 GeV4, indicating that

Γ/(VH4) = 7.6 × 1018 non-inflationary bubbles are nucleated during one expansion time

within a horizon.

3.2 Red model

Since the WMAP3 data strongly prefers a red-tilted scalar spectral index ns, with the

best-fit value given by ns ≈ 0.95 [13], we also study models with a negative curvature along

the flat direction. A simple possible realization of these is given by

VL = A3σ − 1

2
m2

σσ2 . (3.15)

During inflation, the inflaton takes values in between σc and the maximum of VL, which is

located at σ = A3/m2
σ. This translates into the requirement

m

g
<

A3

m2
σ

. (3.16)

Note that this model has an additional parameter when compared with the quadrati-

cally lifted model, which is fixed by imposing the value of the spectral index of the scalar

perturbations ns = 0.95 as an additional constraint. It is calculated through the slow-roll

parameter η as

ns = 1 + 2η , (3.17)
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where

η =
m2

Pl

8π

∂2V/∂σ2

V
. (3.18)

Imposing the spectral index constraint together with equations (3.1) and (3.2), we find

the relations

m2
σ = −η

2π

λ

m4

m2
Pl

, (3.19)

A3 = −2πη

gλ

m5

m2
Pl

+

√

2π

3PR
λ−3/2 m6

m3
Pl

e−ηNe , (3.20)

σe =
m

g
+

1 − exp{−ηNe}
η
√

6πλPR

m2

mPl

. (3.21)

With the numerical result for the Euclidean action (2.26) and the power spectrum

normalization (3.3), this gives

SE =
42

ηg
√

λPR

(1 − exp{−ηNe})
m

mPl

=
9.3 × 105

ηg
√

λ
(1 − exp{−ηNe})

m

mPl

, (3.22)

and, when additionally imposing Ne = 60, η = −0.025,

SE =
1.3 × 108 m

g
√

λmPl

. (3.23)

The consistency condition (2.24) with w = wr for our approximation is fulfilled when

m ¿ 9.7 × 10−7 g√
λ

mPl . (3.24)

Again, we have found that tunneling is preferred for large couplings λ and g and small

values for the mass parameter m, where the small ratio to the Planck scale is imposed by

the small amplitude of density perturbations. Comparison of the Euclidean actions for the

blue model (3.12) and the red (3.23) with Ne = 60 shows that both differ only by a pro-

portionality factor which is irrelevant with respect to the level of our approximation. The

figure for the blue model is therefore almost indistinguishable for the eye when compared

to figure 2 for the red model, which is why it is omitted here.

We note that for the above models, one should bear in mind that in order to obtain

the effective potentials (3.6) and (3.15) in the parametric range which allows for tunneling

decay, one has to require a more than substantial amount of tuning. For hybrid inflation at

the electroweak scale, this is discussed in [16, 17]. The one-loop correction to the tree-level

hybrid potential (2.5) is given by

V1−loop =
1

64π2

(

m2 − g2σ2
)2

log
g2σ2 − m2

Λ2
, (3.25)

where Λ is an ultraviolet cutoff and we have assumed that the quadratic divergence is

canceled by an appropriate counterterm. Under the assumption that the logarithmic cor-

rection gives a lower bound to the slope of VL(σ), a restriction of parameter space is derived

in [16], which translates in terms of our parameters to

m3 >
∼ λ

3

2 g
(

1017GeV
)3

, (3.26)
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where we have set σe ≈ σc, as appropriate for models where a sizeable tunneling rate may

occur. Comparing with figure 2, it is easy to see that tunneling does not play any role

within hybrid models to which the above bound applies. In particular, this requirement

readily rules out models where m is of electroweak scale [18, 19] or of the Peccei-Quinn

symmetry breaking scale [20], unless the couplings g and λ are tuned to be much smaller

than unity. Also, the particular choice of parameters suggested in [21], in order to realize

a model with an intermediate compactification scale of extra dimensions, is in conflict

with (3.26). In turn, this reasoning already strongly indicates that the supersymmetric

scenarios with radiatively lifted flat directions do not suffer from tunneling either, as we

shall see explicitly in the next section, number 3.3.

As it stands, the only way to evade the bound (3.26) would be the fine tuning of a set of

in general non-renormalizable operators, the number of which rapidly increases as the scale

m decreases. In the terminology of [16], this corresponds to an accidental cancellation. This

is clearly very unappealing and apparently no natural mechanism to improve on the flatness

of the inflaton potential has been suggested. Nonetheless, the prospect of inflation at

electroweak scale and therefore within experimental reach is intriguing enough that a hybrid

model has been suggested where the role of the waterfall field φ is played by the Standard

Model Higgs field, although the authors have been aware of the flatness problem [18, 19].

In this model, the field content only needs to be extended by the inflaton singlet σ. Since

these scenarios apparently also bear the potential for successful baryogenesis, the enormous

fine tuning of the potential may be considered worth the price for a minimal field content.

However, our analysis shows that for the desired parameters m/
√

λ = 246GeV, and the

couplings g, λ = O(1) in order to allow for strong pre- or reheating, a rapid decay via

tunneling is inevitable, such that the electroweak hybrid models are not viable, even if fine

tuned.

To summarize, we share the view of [16], that models in conflict with the bound (3.26)

are ruled out, unless there exists a compelling mechanism to evade it. This includes all

models for which the type of tunneling discussed here is relevant. However, even if one

does suppose that the constraints from radiative corrections [16] may be alleviated, the

models discussed in [18, 19, 21] are still ruled out by tunneling.

3.3 SUSY hybrid inflation

From the general arguments on the irrelevance of the tunneling rate within our approxi-

mation for models without fine-tuning of nonrenormalizable operators, it is already clear

that tunneling does not play a role in SUSY-hybrid inflation [20, 22]. These models are

however of special interest since they rely on rather minimal assumptions and in their sim-

plest version depend only on a single parameter κ [23], which can be determined [24] from

the latest observational data [13].3 They furthermore bear the potential of a successful

embedding of the Minimal Supersymmetric Standard Model in an inflationary scenario,

possibly linked to a Grand Unified Theory [22, 25 – 27]. Due to the importance of these

3Before the WMAP3 data became available, only an upper bound on κ could be given.
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models, we derive here an expression for the Euclidean bounce action SE, although it will

be large and prohibit tunneling.

F -term SUSY hybrid inflation is implemented by the superpotential

W = κS
(

GG − M2
)

, (3.27)

which leads to the tree-level scalar potential

V = κ2|GG − M2|2 + κ2|SG|2 + κ2|SG|2 . (3.28)

The involved fields are complex, where S is a singlet, G a gauged multiplet of dimension

N and G its conjugate. Vanishing of the D-terms relates the vacuum expectation values

〈G〉 = 〈G〉∗.
We choose the phase of S to be zero and identify

σ =
√

2Re[S] . (3.29)

Likewise, by a unitary gauge choice, such that 〈Re[Gi]〉 = 〈|G|〉, we can set

φ =
√

2Re[Gi] . (3.30)

In terms of these fields, the potential (3.28) reads

V = κ2M4 − κ2M2φ2 +
1

4
κ2φ4 +

1

2
κ2σ2φ2 . (3.31)

This is a special case of the more general potential (2.5) with the replacements

m2 = 2κ2M2 ,

g = κ ,

λ = κ2 . (3.32)

The lifting of the flat direction is then induced by the Coleman-Weinberg potential [22, 27]

VL =
N

32π2
κ4

{

(

σ2

2
+ M2

)2

log

(

κ2
1
2
σ2 + M2

Λ2

)

+

(

σ2

2
− M2

)2

log

(

κ2
1
2
σ2 − M2

Λ2

)

−1

2
σ4 log

(

κ2 1

2

σ2

Λ2

)}

. (3.33)

We consider again the situation where σ is close to the critical point, such that we can

approximate
∂VL

∂σ
≈

√
2 log 2

N
8π2

κ4M3 + O(M2∆σ) , (3.34)

where the critical point is at σ = σc =
√

2M and ∆σ = σ−σc. Within this approximation,

the number of e-folds (3.1) is

Ne =
64π3

√
2 log 2

M∆σ

κ2Nm2
Pl

. (3.35)
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Imposing the normalization of the power spectrum (3.2), we get a relation between κ and

M ,

M = κ1/3

(√
3PR N log 2

π5/2

)1/3
mPl

4
, (3.36)

such that we can derive

∆σ = (log 2)1/32−3/23−1/3π−4/3κ4/3
(

√

PR

)−2/3

MN 1/3Ne . (3.37)

Using (2.26), we find for the Euclidean tunneling action

SE = 6.1
(

κ
√

PR

)−2/3

N 1/3Ne = 4800κ−2/3N 1/3Ne . (3.38)

Tunneling therefore does not occur within F -term SUSY-hybrid inflation.

We have also performed a corresponding study for the D-term model [28, 29], which

is more involved due to the additional parametric dependence on the gauge coupling con-

stant. However, as one can already anticipate from the general arguments about radiative

corrections and tunneling given at the end of section 3.2, we find that tunneling is also

strongly suppressed in these scenarios. We therefore omit a detailed presentation of the

derivation of this negative result.

4. Conclusions

Imposing the normalization of the scalar perturbation spectrum (3.2), it is possible to

estimate for generic models of hybrid inflation the range of parameters where tunneling

dominates over the slow-roll evolution of the inflaton fields. In order to calculate the

Euclidean action SE, we have assumed that the bounce solution follows a straight trajectory

in the field space spanned by the inflaton and the waterfall field. We have numerically

obtained the action for a particular set of parameters and then used its scaling properties

in order to calculate the tunneling rates in parametric regions of small couplings and small

field values, which are difficult to access numerically. This result is expressed in eq. (2.26),

which we have used to derive constraints on hybrid inflation, arising from the requirement

that tunneling should be suppressed. The consistency of our approach is verified by a

comparison with the numerically determined results for the bounce action along the curved

extremal path in two-dimensional field space.

Our results are best summarized by the formulas (3.12), (3.23) and by figure 2. Tun-

neling may play a role for models with a mass below 1012 GeV, but can effectively be

suppressed by small values of the inflaton-waterfall coupling g and the waterfall self cou-

pling λ, which in turn imply large expectation values of the inflaton field during inflation

or the waterfall field after its end.

Provided one does not allow for the fine-tuning of nonrenormalizable operators, tun-

neling never constitutes a problem. In particular, one cannot derive any tunneling bounds

on the parameters of F - or D-term SUSY models. In contrast, models of electroweak hy-

brid inflation, which need coupling constants of order one for a sufficient reheating of the

Universe but require fine-tuning, are completely ruled out since the inflaton would rapidly
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decay through bubble nucleation. Leaving alone the issue of stability of the inflaton po-

tential with respect to radiative corrections, tunneling decay prohibits the realization of

hybrid inflation when the vacuum energy and all field expectation values are required to

be at scales below 1012 GeV.
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